MATH 54 - MIDTERM 2 - BONUS SOLUTIONS

PEYAM RYAN TABRIZIAN

Bonus: In this problem, we're going to use the Wronskian to find the general solution of a quite complicated differential equation! This should illustrate yet again the power of the Wronskian!
(a) Consider the differential equation:

$$
y^{\prime \prime}+P(t) y^{\prime}+Q(t) y=0
$$

Recall the definition of the Wronskian determinant:

$$
W(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{2}^{\prime}(t) y_{1}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

Where y_{1} and y_{2} solve the above differential equation.
By differentiating $W(t)$ with respect to t, find a simple differential equation satisfied by $W(t)$ and solve it. You answer will involve the \int sign!

$$
\begin{aligned}
W^{\prime}(t) & =y_{2}^{\prime \prime}(t) y_{1}(t)+y_{2}^{\prime}(t) y_{1}^{\prime}(t)-y_{1}^{\prime \prime}(t) y_{2}(t)-y_{1}^{\prime}(t) y_{2}^{\prime}(t) \\
& =y_{2}^{\prime \prime}(t) y_{1}(t)-y_{1}^{\prime \prime}(t) y_{2}(t) \\
& =\left(-P(t) y_{2}^{\prime}(t)-Q(t) y_{2}(t)\right) y_{1}(t)+\left(P(t) y_{1}^{\prime}(t)+Q(t) y_{1}(t)\right) y_{2}(t) \\
& =-P(t) y_{2}^{\prime}(t) y_{1}(t)-Q(t) y_{1}(t) y_{2}(t)+P(t) y_{1}^{\prime}(t) y_{2}(t)+Q(t) y_{1}(t) y_{2}(t) \\
& =-P(t)\left(y_{2}^{\prime}(t) y_{1}(t)-y_{1}^{\prime}(t) y_{2}(t)\right) \\
& =-P(t) W(t)
\end{aligned}
$$

Hence $W^{\prime}(t)=-P(t) W(t)$, so $W(t)=C e^{-\int P(t) d t}$
(b) Hence, by (a), we know:

$$
y_{2}^{\prime}(t) y_{1}(t)-y_{2}(t) y_{1}^{\prime}(t)=\text { your answer in }(a)
$$

Divide this equality by $\left(y_{1}(t)\right)^{2}$ and recognize the left-hand-side as the derivative of a quotient, and hence solve for y_{2} in terms of y_{1}. You answer will involve another \int sign!

We have:

$$
\begin{aligned}
y_{2}^{\prime}(t) y_{1}(t)-y_{2}(t) y_{1}^{\prime}(t) & =e^{-\int P(t) d t} \\
\frac{y_{2}^{\prime}(t) y_{1}(t)-y_{2}(t) y_{1}^{\prime}(t)}{\left(y_{1}(t)\right)^{2}} & =\frac{e^{-\int P(t) d t}}{\left(y_{1}(t)\right)^{2}} \\
\left(\frac{y_{2}(t)}{y_{1}(t)}\right)^{\prime} & =\frac{e^{-\int P(t) d t}}{\left(y_{1}(t)\right)^{2}} \\
\frac{y_{2}(t)}{y_{1}(t)} & =\int \frac{e^{-\int P(t) d t}}{\left(y_{1}(t)\right)^{2}} \\
y_{2}(t) & =\left(\int \frac{e^{-\int P(t) d t}}{\left(y_{1}(t)\right)^{2}}\right) y_{1}(t)
\end{aligned}
$$

(c) Let's apply the result in (b) to the differential equation:

$$
y^{\prime \prime}-\tan (t) y^{\prime}+2 y=0
$$

(here $P(t)=-\tan (t), Q(t)=2$)
One solution (by guessing) is given by $y_{1}(t)=\sin (t)$. Use your answer to (b) to find another solution $y_{2}(t)$!

Hint: You may use the following facts: $\int \tan (t) d t=-\ln (\cos (t))$, the substitution $u=\frac{1}{\sin (t)}$, and finally the formula $\frac{u^{2}}{1-u^{2}}=\frac{1}{1-u^{2}}-$ $1=\frac{1}{2(1-u)}+\frac{1}{2(1+u)}-1$.

We have:

$$
\begin{aligned}
& y_{2}(t)=\left(\int \frac{e^{-\int P(t) d t}}{\left(y_{1}(t)\right)^{2}}\right) y_{1}(t) \\
& =\left(\int \frac{e^{\int \tan (t) d t}}{\sin ^{2}(t)}\right) \sin (t) \\
& =\left(\int \frac{e^{-\ln (\cos (t))}}{\sin ^{2}(t)}\right) \sin (t) \\
& =\left(\int \frac{\frac{1}{e^{\ln (\cos (t))}}}{\sin ^{2}(t)}\right) \sin (t) \\
& =\left(\int \frac{\frac{1}{\cos (t)}}{\sin ^{2}(t)}\right) \sin (t) \\
& =\left(\int \frac{1}{\cos (t) \sin ^{2}(t)}\right) \sin (t) \\
& =\left(\int\left(\frac{1}{\cos ^{2}(t)}\right)\left(\frac{\cos (t)}{\sin ^{2}(t)}\right)\right) \sin (t) \\
& =\left(\int\left(\frac{1}{1-\sin ^{2}(t)}\right)\left(\frac{\cos (t)}{\sin ^{2}(t)}\right)\right) \sin (t) \\
& =\left(\int \frac{-d u}{1-\frac{1}{u^{2}}}\right) \sin (t) \quad \text { Use } u=\frac{1}{\sin (x)} \text {, then } \sin (x)=\frac{1}{u} \\
& =\left(\int \frac{-u^{2}}{u^{2}-1} d u\right) \sin (t) \quad \text { (multiply top and bottom by } u^{2} \text {) } \\
& =\left(\int-1+\frac{-1}{2(u-1)}+\frac{1}{2(1+u)}\right) \sin (t) \\
& =\left(-u+\frac{1}{2} \ln |u+1|-\frac{1}{2} \ln |u-1|\right) \sin (t) \\
& =\left(\frac{-1}{\sin (t)}+\frac{1}{2} \ln \left|\frac{1}{\sin (t)}+1\right|-\frac{1}{2} \ln \left|\frac{1}{\sin (t)}-1\right|\right) \sin (t) \\
& =\left(\frac{-1}{\sin (t)}+\frac{1}{2} \ln \left|\frac{\frac{1}{\sin (t)}+1}{\frac{1}{\sin (t)}-1}\right|\right) \sin (t) \\
& =\left(\frac{1}{-\sin (t)}+\frac{1}{2} \ln \left|\frac{1+\sin (t)}{1-\sin (t)}\right|\right) \sin (t) \quad \text { (multiply top and bottom by } \sin (t) \text {) } \\
& =-1+\sin (t) \operatorname{coth}^{-1}(\sin (t))
\end{aligned}
$$

(d) Notice that the equation $y^{\prime \prime}-\tan (t) y^{\prime}+2 y=0$, although quite complicated, is still linear. What is the general solution of $y^{\prime \prime}-$ $\tan (t) y^{\prime}+2 y=0$?

$$
y(t)=A y_{1}(t)+B y_{2}(t)=A \sin (t)+B\left(-1+\sin (t) \operatorname{coth}^{-1}(\sin (t))\right)
$$

